- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Koga, Brian (2)
-
Zhang, Xuechen (2)
-
Zhao, Xinghui (2)
-
VanderWeide, Theresa (1)
-
Vanderweide, Theresa (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Koga, Brian; Vanderweide, Theresa; Zhao, Xinghui; Zhang, Xuechen (, 3rd Workshop on Accelerated Machine Learning (AccML) Co-located with the HiPEAC 2021 Conference)null (Ed.)Deep neural networks (DNNs) have recently gained unprecedented success in various domains. In resource-constrained systems, QoS-aware DNNs are designed to meet latency requirements of mission-critical deep learning applications. However, none of the existing DNNs have been designed to satisfy both latency and memory bounds simultaneously as specified by end-users in the resource-constrained systems. In this paper, we propose BLINKNET, a runtime system that is able to guarantee both latency and memory/storage bounds via efficient QoS-aware per-layer approximation. We implement BLINKNET in Apache TVM and evaluate it using Cifar10-quick and VGG network models. Our experimental results show that BLINKNET can meet the latency and memory requirements with 2% accuracy loss on average.more » « less
An official website of the United States government

Full Text Available